
Install Postman
Open Postman and import the vendor-test-extract collection JSON(vendor-tests.postman_collection.json)
and environment JSON (vendor-env.postman_environment.json) from the zip file.
Apply test data file included in the zip file (shop_inputs.csv for shopping endpoints and book_inputs.csv
for booking related endpoints).
Ensure "baseUrl" environment variable is set in the postman environment to appropriate values for your
deployment.
Run requests as you see fit. Change request parameters by changing the variables from the provided
environment file.

Install newman, the cli tool for running Postman collections
brew install newman

or
npm i -g newman

or
npm install -g newman

For Linux/MacOS, Execute the shell script from the zip folder, ./run-vendor-tests.sh which will
execute scenarios for both shop and book endpoints.
For Windows, Execute the bat file from command prompt using command .\run-vendor-tests.bat .

The following variables are being set in the global environment. For testing with real credit cards, please
update corresponding payment related variables. NOTE: Fields which contain ** are the required fields in the
schema to make the requests.

Env Parameters Description Example value

cardType ** PaymentCardType. VISA.

cardNumber ** Payment card number corresponding to the card type
4242-4242-4242-
4242

Usage

Postman

Newman (Optional)

Environment variables

https://www.postman.com/downloads/
https://github.com/postmanlabs/newman

Env Parameters Description Example value

cvv
Card Verification Value - three or four-digit number on credit
card for security

369

cardHolderName Name of the card holder John Smith

addressLines Address of the card holder
910 Mainland
Street

city ** City name Vancouver

state Two-character state code BC

countryCode ** Two-character ISO code (ISO ALPHA-2) for country. CA

postalCode Postcal code V5K 0A1

programCode ** programCode EM.

accoundId ** account ID 209875030.

baseUrl ** Vendor endpoint

posRequestorId
**

An identifier of the entity making the request (e.g. ATA/IATA/ID
number)

HTL:91369

username user name for authentication.

password password for authentication.

The following data is from the csv file which is being used for this postman collection.
NOTE: Fileds which contain ** are the required fields in the schema to make the requests.

Dynamic Parameters Description Example value

travelerUuid ** UUID that identifies the traveler within Concur
123e4567-e89b-
12d3-a456-
426614174000

loginId
Login ID of traveler within Concur. Only sent when
available.

abc@concur.com

bookingForSelf
Is logged in person booking for self or on behalf of
someone else

true

numGuests No. of guests for accomodation as entered by traveler 1

Data files variables

Dynamic Parameters Description Example value

guestCountryCode Two-character ISO code (ISO ALPHA-2) for country CA

locationType ** Type of location associated with this search Hotel

name ** Name of the location corresponding to it's locationtype
Sheraton DFW
Airport Hotel

latitude ** Geo location latitude coordinates for search 49.246292

longitude ** Geo location longitude coordinates for search -123.116226

otaCode **
Code based on OTA Rate Plan Type (RPT) list.
(https://www.opentraveldevelopersnetwork.com/code-
list)

1

value Optional value for the given rate plan type code AAA

searchSessionToken
Session token to be generated and provided by server
on initial "search" call that can be referenced back for
future api calls on the same session

3fa85f64-5717-
4562-b3fc-
2c963f66afa6

paymentModeIndicator
Type of the card from [PERSONAL_CARD,
CORPORATE_CARD, CONCUR_VIRTUAL_CARD,
VENDOR_VIRTUAL_CARD].

PERSONAL_CARD

customFieldName **
Vendor specific field name if setup for vendor
integration

OrgUnit

customeFieldValue ** Value of the custom field Travel Agents

The tests in this collection validate requests and responses against the HS4 OpenAPI spec. It does this by first
reading the schema environment variable which stores the HS4 spec, and registering each object in the
schema. Postman ships with the Tiny Validator for v4 JSON Schema included. In each of the tests, the tv4
library is used to validate the request and response models against the schema.

To help with quicker onboard process and early triage of issues it is recommended the test execution evidence
is shared with concur team upon completion of test execution.

1. Irrespective of what tool is used for doing the testing the suppliers must document and share at-least one
example for each request and response (in JSON Format) of all REST endpoints on the suppliers host

OpenAPI validation in Postman

Test Evidence to be shared with Concur Team

https://www.opentraveldevelopersnetwork.com/code-list
https://geraintluff.github.io/tv4/

system that's implementing HSv4 spec.

2. The data files utilized in tests (shop_inputs.csv & book_inputs.csv) and the host URL information.
3. The vendor-env.postman_environment.json file used to conduct the tests.

On top of these two documents the following additional evidence documents should be shared with concur
team depending on the tool of choice used for testing.

The contents of the console when ./run-vendor-tests.sh (in case of testers host machine operating
system being OS X) or .\run-vendor-tests.bat (in case of testers host machine operating system being
Windows) needs to be extracted and shared with concur Team. Please find below for an example console Log

Additional Test Execution Evidence when a Tester utilized Newman to run the
tests.

(only partial log is shown in screen print for brewity of this guide) in case of a successful test execution:

Capture the screen prints of each request execution in such a way the response HTTP status and test
execution results were visible. Please find below for an example postman test evidence screenshot for search
transaction.

Additional Test Execution Evidence when a Tester utilized postman to run the
tests.

